

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

The Resolution and the Effect of the Phases Volume Ratio on It in Countercurrent Distribution

Eli Grushka^a

^a DEPARTMENT OF CHEMISTRY, STATE UNIVERSITY OF NEW YORK AT BUFFALO, BUFFALO, NEW YORK

To cite this Article Grushka, Eli(1972) 'The Resolution and the Effect of the Phases Volume Ratio on It in Countercurrent Distribution', *Separation Science and Technology*, 7: 3, 293 — 295

To link to this Article: DOI: 10.1080/00372367208058990

URL: <http://dx.doi.org/10.1080/00372367208058990>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

The Resolution and the Effect of the Phases Volume Ratio on It in Countercurrent Distribution

ELI GRUSHKA

DEPARTMENT OF CHEMISTRY
STATE UNIVERSITY OF NEW YORK AT BUFFALO
BUFFALO, NEW YORK 14214

Summary

This note describes the effect of the phases volume ratio on the resolution and the minimum required number of transfers in countercurrent distribution. It is shown that the resolution or the minimum transfer number can be optimized by a correct choice of the phases volume ratio.

Recently Grushka (1) has shown that the plate, resolution, and peak capacity concepts can be used in countercurrent distribution (CCD). The purpose of this note is to further elaborate on the resolution equation and to investigate the role of the volume ratio of the organic and aqueous phases on the resolution and on the number of transfer required for a given resolution.

In our previous work (1) the following expression for the resolution (Rs), in the case where the partition coefficients of the two solute are close in magnitude was developed:

$$Rs = \frac{(N_2)^{1/2}}{4} \left(\frac{p_2 - p_1}{p_2} \right) \quad (1)$$

where p is the fraction of the solute in the upper phase and the subscript

293

Copyright © 1972 by Marcel Dekker, Inc. *NO PART of this work may be reproduced or utilized in any form or by any means, electronic or mechanical, including xerography, photocopying, microfilm, and recording, or by any information storage and retrieval system, without the written permission of the publisher.*

identifies the solutes, and N is the number of plates. Using the definition of p and defining a relative migration, α , as K_2/K_1 , Eq. (1) can be re-written as

$$Rs = \frac{(N_2)^{1/2}}{4} \left(\frac{\alpha - 1}{\alpha} \right) (1 - p_1) \quad (2)$$

This equation is the exact analog of the commonly used resolution expression in chromatography (2). In both methods the resolution depends on the efficiency $(N)^{1/2}$ of the system, on the selectivity $(\alpha - 1)/\alpha$, and on the migration rate of one of the solutes $(1 - p_1)$. The ramifications of this equation are adequately described elsewhere (1).

The discussion in our previous work (1), as well as here, assumed equal phases volume. Although the common mode of operation involves equal volumes, it is not necessarily the best procedure. The apparent partition coefficients depend on the ratio of the upper (mobile) to lower (stationary) phase volume. Consequently, the rigorous expression for the resolution is (from Eq. 11 of Ref. 1)

$$Rs = n \left(\frac{VK_2}{1 + VK_2} - \frac{VK_1}{1 + VK_1} \right) / 2(n)^{1/2} \left[\frac{(VK_2)^{1/2}}{1 + VK_2} + \frac{(VK_1)^{1/2}}{1 + VK_1} \right] \quad (3)$$

where n is the number of transfers and V is the ratio of the upper phase volume to the lower phase volume. It is of practical importance to investigate the effect of V on the resolution. Equation (3) can be rearranged to give

$$Rs = \frac{1}{2(nV)^{1/2}} \left[\frac{K_2(1 + VK_1) - K_1(1 + VK_2)}{(K_2)^{1/2}(1 + VK_1) + (K_1)^{1/2}(1 + VK_2)} \right] \quad (4)$$

Differentiating Eq. (4) with respect to the volume ratio V and setting the resultant equation equal to zero shows that the resolution is maximized when V is

$$V = 1/(K_1 K_2)^{1/2} \quad (5)$$

This is in agreement with the Bush-Densen relation (3), which was derived, for the case of a single extraction, using semiempirical arguments. In our opinion, the above discussion is the simplest, and yet theoretically sound, derivation of the Bush-Densen relation. To our knowledge, this relationship was not previously derived in connection

with CCD. Wolf (4) has also discussed the effect of the phases volume and indicated that by changing V one can change markedly the resolution between the components in the mixture.

Perhaps more important is the effect of the volume ratio on the minimum number of transfers required to yield a resolution of unity. Intuitively, one expects that the phases volume ratio which maximized the resolution should also minimize the required transfer number. The required number of transfers in the case where $V = 1$ was found to be (1 and references therein)

$$n_{\text{req}} = 4 \left[\frac{(K_1)^{1/2}(K_2 + 1) + (K_2)^{1/2}(K_1 + 1)}{K_2 - K_1} \right]^2 \quad (6)$$

If we now introduce the volume ratio V in Eq. (6) and rearrange, we get:

$$n_{\text{req}} = 4 \left[\frac{V[K_2(K_1)^{1/2} + K_1(K_2)^{1/2}] + (K_1)^{1/2} + (K_2)^{1/2}}{V(K_2 - K_1)} \right]^2 \quad (7)$$

Simple differentiation of Eq. (7) with respect to V shows that indeed the phase volume ratio given by Eq. (5) minimizes the number of transfers required to achieve a resolution of unity. This effect of the volume phases ratio on n_{req} was also mentioned by Wolf. He states that the required number of transfers will be minimized when the product of the apparent distribution ratios of the two solute is unity. Equation (7) allows a simple verification of this statement. The practical implications of this quantitative treatment of the effect of the phases volume ratio are, we feel, obvious.

REFERENCES

1. E. Grushka, *Separ. Sci.*, **6**, 331 (1971).
2. L. Karger, *J. Gas Chromatogr.*, **5**, 161 (1967).
3. M. T. Bush and P. M. Densen, *Anal. Chem.*, **20**, 121 (1948).
4. F. J. Wolf, *Separation Methods in Organic Chemistry and Biochemistry*, Academic, New York, 1969, pp. 18-19 and 91-93.

Received by editor November 10, 1971